Synthesis of $\mathrm{Fe}-\mathrm{M}$ complexes ($\mathrm{M}=\mathrm{Mo}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$) using trans-Fe(EtPhPpy) ${ }_{2}(\mathrm{CO})_{3}$ as an organometallic tridentate ligand Molecular structures of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu \text {-EtPhPpy })_{2} \mathrm{Mo}(\mathrm{CO})_{3}$ and $(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\mathrm{EtPhPpy})_{2} \mathrm{Cd}(\mathrm{SCN})_{2}$
 ($\mathrm{EtPhPpy}=2-$ ethylphenylphosphino) pyridine)

Shan-Ming Kuang ${ }^{\text {a }}$, Zheng-Zhi Zhang ${ }^{\text {b }}$, Bo-Mu Wu ${ }^{\text {a }}$, Thomas C.W. Mak ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
${ }^{\mathrm{b}}$ Elemento-Organic Chemistry Laboratory, Nankai University, Tianjin, People's Republic of China

Received 21 October 1996; revised 19 January 1997

Abstract

trans-Fe(EtPhPpy $)_{2}(\mathrm{CO})_{3}$ reacts with $\mathrm{Mo}(\mathrm{CO})_{6}$ and $\mathrm{M}(\mathrm{SCN})_{2}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg})$ to form binuclear complexes containing an $\mathrm{Fe}-\mathrm{M}$ bond. Crystal and molecular structures of the title complexes have been determined by X -ray analysis, which yielded $\mathrm{Fe}(0)-\mathrm{Mo}(0)$ and $\mathrm{Fe}(0)-\mathrm{Cd}(\mathrm{II})$ bonded lengths of $2.922(1) \AA$ and $2.648(1) \AA$ respectively. © 1997 Elsevier Science S.A.

Keywords: 2-(Ethylphenylphosphino)pyridine; Heterodinuclear complex; Molecular structure

1. Introduction

There is currently considerable interest in binuclear complexes in which strong interaction takes place between the metal atoms. Many hetero- and homo-binuclear complexes have been prepared using 2 -(diphenylphosphino)pyridine ($\mathrm{Ph}_{2} \mathrm{Ppy}$) as a bridging ligand [1]. Previous papers from our laboratories have described the synthesis of binuclear complexes using trans$\mathrm{Fe}\left(\mathrm{Ph}_{2} \mathrm{Ppy}\right)_{2}(\mathrm{CO})_{3} \quad[2-4]$, trans- $\mathrm{Fe}\left(\mathrm{Ph}_{2} \mathrm{Ppym}\right)_{2}(\mathrm{CO})_{3}$ ($\mathrm{Ph}_{2} \mathrm{Ppym}=2$-(diphenylphosphino)pyrimidine) [5] and $\mathrm{Fe}\left(\mathrm{Ph}_{2} \mathrm{Ppy}-\mathrm{P}\right)(\mathrm{CO})_{4}[6]$ as bidentate or tridentate ligands. We report here the synthesis of a series of $\mathrm{Fe}-\mathrm{M}$ ($\mathrm{M}=\mathrm{Mo}, \mathbf{2} ; \mathrm{Mn}, \mathbf{3} ; \mathrm{Fe}, \mathbf{4} ; \mathrm{Co}, 5 ; \mathrm{Ni}, \mathbf{6} ; \mathrm{Zn}, 7 ; \mathrm{Cd}, \mathbf{8}$; $\mathrm{Hg}, 9)$ complexes using trans-Fe(EtPhPpy) $(\mathrm{CO})_{3}, 1$, as a neutral tridentate ligand.

2. Results and discussion

Reaction of EtPhPLi, which was prepared by the reaction of $\mathrm{EtPh}_{2} \mathrm{P}$ with lithium shavings in THF, with

[^0]2-chloropyridine led to the formation of a new pyridylphosphine ligand 2-(ethylphenylphosphino)pyridine (EtPhPpy) as an R / S mixture. A new neutral organometallic tridentate ligand trans$\mathrm{Fe}(\mathrm{EtPhPpy})_{2}(\mathrm{CO})_{3}$, which is the $R S$-isomer, was obtained from the reaction of $\mathrm{EtPhPpy}, \mathrm{NaOH}$ and $\mathrm{Fe}(\mathrm{CO})_{5}$ in n-butanol. The racemic $R R / S S$ diastereomer was also found as a minor product in the reaction mixture but not crystallized with the $R S$-isomer. Evidence for the formation of the racemic product is provided by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR of the mixture, which exhibits a tiny peak ($\delta=88.76 \mathrm{ppm}$) beside the main peak ($\delta=92.71 \mathrm{ppm}$) assigned to the $R S$-isomer (Scheme 1).

The IR spectrum of complex 1 shows one intensive carbonyl stretcting absorption $\nu(\mathrm{CO})$ at $1865 \mathrm{~cm}^{-1}$ which implies that the local symmetry about the Fe atom is near $D_{3 \mathrm{~h}}$. A recent study has shown that the basicity of the metal atom in trans-Fe $\left(\mathrm{R}_{3} \mathrm{P}\right)_{2}(\mathrm{CO})_{3}$ depends linearly on the basicity of the phosphine ligand and $\nu(\mathrm{CO})$ [7]. Compared to $\nu(\mathrm{CO})=1874 \mathrm{~cm}^{-1}$ for trans $-\mathrm{Fe}\left(\mathrm{Ph}_{2} \mathrm{Ppy}\right)_{2}(\mathrm{CO})_{3}$, the smaller $\nu(\mathrm{CO})$ value of compound 1 indicates that the basicity of EtPhPpy is higher than that of $\mathrm{Ph}_{2} \mathrm{Ppy}$, and the $\mathrm{Fe}(0)$ atom in 1 has stronger donor properties.

Scheme 1.

Reaction of trans- $\mathrm{Fe}(\mathrm{EtPhPpy})_{2}(\mathrm{CO})_{3}$ with $\mathrm{Mo}(\mathrm{CO})_{6}$ in refluxing benzene resulted in the formation of $(\mathrm{OC})_{3} \mathrm{Fe}(\mu \text {-EtPhPpy })_{2} \mathrm{Mo}(\mathrm{CO})_{3}, 2$, whose IR spectrum shows extensive absorption bands ($1830-2017 \mathrm{~cm}^{-1}$) in the range of terminal carbonyl stretching vibration. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra exhibits one peak at $\delta=$ 78.35 ppm which is consistent with the chemical equivalence of the two phosphorus atoms.

An ORTEP drawing and atom numbering of the binuclear molecule 2 is shown in Fig. 1. A crystallographic mirror plane contains the metal atoms and four carbonyl groups. The $\mathrm{Fe}(0)$ and $\mathrm{Mo}(0)$ centers are bridged by two EtPhPpy ligands and a metal-metal bond, such that two P atoms coordinated to Fe are trans to each other, whereas two N atoms coordinated to Mo are cis to each other. The $O(4), C(4), \mathrm{Mo}(1), \mathrm{Fe}(1), \mathrm{C}(2)$ and $\mathrm{O}(2)$ atoms are almost collinear. The $\mathrm{Fe}-\mathrm{Mo}$ distance of $2.922(1) \AA$ is shorter than that of $\operatorname{Mo}\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mu$ η^{5}, η^{3}-azulene $) \mathrm{Fe}(\mathrm{CO})_{3} 3.092(1) \AA$ [\AA, but is longer

Fig. 1. Perspective view of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\mathrm{EtPh} \mathrm{Ppy})_{2} \mathrm{Mo}(\mathrm{CO})_{3}, 2$, in its $2: 1$ solvate with toluene. The thermal ellipsoids are drawn at the 35% probability level. The atoms $\mathrm{Mo}(1), \mathrm{Fe}(1), \mathrm{C}(1), \mathrm{O}(1), \mathrm{C}(2), \mathrm{O}(2)$, $C(3), O(3), C(4)$ and $O(4)$ lie on a crystallographic mirror plane.
than those found in the complexes $(\mathrm{OC})_{2} \mathrm{MoCp}(\mu-$ $\mathrm{Tol}) \mathrm{Fe}(\mathrm{CO})_{4}, \quad 2.823(1) \AA$ [9], (OC$)_{2} \mathrm{MoCp}\left(\mu-\eta^{2}-\right.$ $\left.\mathrm{SCC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Fe}(\mathrm{CO})_{3}, 2.765(1) \AA$ [10], $(\mathrm{OC})_{4} \mathrm{Mo}(\mu-$ $\left.\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}, 2.854(1) \AA$ [11]. The Mo-N bond distance of $2.327(4) \AA$ is comparable to those found in the complexes $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{dien})$, 2.32(3) \AA [12], $\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}(\mathrm{pip}), 2.341(5) \AA$ [13]. The $\mathrm{Mo}-\mathrm{C}$ distances $1.922(7) \AA, 1.934(6) \AA$ are shorter than those of $(\mathrm{OC})_{2} \mathrm{MoCp}(\mu$ - Tol$) \mathrm{Fe}(\mathrm{CO})_{4}, \quad 1.973(7), \quad 1.952(7) \AA$ [9], (OC) ${ }_{2} \mathrm{MoCp}\left(\mu-\eta^{2}-\mathrm{SCC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{Fe}(\mathrm{CO})_{3}$, $2.163(2), \quad 1.974(2) \AA \quad[10]$ and $(\mathrm{OC})_{4} \mathrm{Mo}(\mu$ $\left.\mathrm{Ph}_{2} \mathrm{P}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}, \quad 2.012(7), \quad 2.025(8), \quad 2.045(7)$, $2.059(7) \AA$ [11].

Under mild conditions, reaction of complex 1 with $\mathbf{M}(\mathrm{SCN})_{2}(\mathbf{M}=\mathbf{M n}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg})$ resulted in the formation of binuclear complexes containing $\mathrm{Fe}(0)-$ M(II) bonds in moderate yields. Compared to complex 1, the IR $\nu(\mathrm{CO})$ spectra of these binuclear complexes split into three peaks and shift to higher frequencies, which is consistent with both a change in stereochemistry and decrease in electron density on the $\mathrm{Fe}(0)$ atom.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $3-7$ at room temperature consist of a singlet which indicates that both P atoms remain chemically equivalent. The change in δ value also implies the formation of binuclear complexes. For complex 8, coupling of two bonds (${ }^{31} \mathrm{P}-\mathrm{Fe}-{ }^{111} \mathrm{Cd},{ }^{113} \mathrm{Cd}$) is observed with ${ }^{2} J_{\mathrm{P}-\mathrm{Fe}-\mathrm{Cd}}=$ 36 Hz , which is comparable to those observed in mer$\left[\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right\}(\mathrm{CO})_{3} \mathrm{Fe}\left(\mu-\mathrm{Ph}_{2} \mathrm{Ppy}\right)\right]_{2} \mathrm{Cd},{ }^{2} J_{\mathrm{P}-\mathrm{Fe}-\mathrm{Cd}}=$ 66 Hz , and $m e r-\left[\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right\}(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{Ppy}\right) \mathrm{CdBr}(4-\mathrm{pic})\right],{ }^{2} J_{\mathrm{P}-\mathrm{Fe}-\mathrm{Cd}}=82 \mathrm{~Hz}$ [14]. For complex 9, the magnitude of the ${ }^{2} J\left({ }^{31} \mathrm{P}-\mathrm{Fe}-{ }^{199} \mathrm{Hg}\right)$ value is 235 Hz , and comparable coupling constants have been previously observed in some complexes containing an Fe-Hg bond, for example $\mathrm{Hg}\left[\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{SiMePh}_{2}\right)\left(\mathrm{PR}_{3}\right)\right]_{2}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Bu},{ }^{2} J_{\mathrm{P}-\mathrm{Fe}-\mathrm{Hg}}\right.$ $=240, \quad 205 \mathrm{~Hz}$) $\quad\left[\begin{array}{ll}15\end{array}\right]$, and $\left.\mathrm{Hg}\left[\mathrm{Fe}(\mathrm{CO})_{3}\left\{\mathrm{Si}(\mathrm{OMe})_{3}\right)\right\}(\mathrm{dppm}-P)\right]_{2} \quad\left({ }^{2} J_{\mathrm{P}-\mathrm{Fe}-\mathrm{Hg}}=\right.$ 173 Hz) [16].

An ORTEP drawing and atom numbering of compound 8 is shown in Fig. 2. The distorted octahedral environ-

Fig. 2. Perspective view of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\mathrm{EtPhPpy})_{2} \mathrm{Cd}(\mathrm{SCN})_{2}$, 8. The thermal ellipsoids are drawn at the 35% probability level.
ment about the Fe atom consists of the $\mathrm{Cd}(\mathrm{II})$ atom, two P atoms and three carbon atoms of terminal carbonyls. The Cd atom exhibits a distorted trigonal bipyramidal configuration, in which two pyridine nitrogen atoms occupy the axial position and the $\mathrm{Fe}, \mathrm{N}(3)$ and $\mathrm{N}(4)$ atoms lie in the equatorial plane. The SCN^{-}ligand is bonded to the Cd (II) atom in the isothiocyanate mode rather than a thiocyanate one. The two pyridine nitrogen atoms remain trans, which is different from that of complex 2. The $\mathrm{Fe}-\mathrm{Cd}$ bond distance, $2.684(1) \AA$, is
similar to that of mer $-\left[\left((\mathrm{MeO})_{3} \mathrm{Si}\right)(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{Ppy}\right)\right]_{2} \mathrm{Cd}, 2.6970(5) \AA$ [14], and is longer than those found in $m e r-\left[\left\{(\mathrm{MeO})_{3} \mathrm{Si}\right)(\mathrm{CO})_{3} \mathrm{Fe}(\mu \text {-dppm) }]_{2} \mathrm{Cd}\right.$, $2.624(2) \AA \quad[17]_{8} \quad \operatorname{mer}-\left[\left(\mathrm{Ph}_{2} \mathrm{HP}\right)\left(\mathrm{Ph}_{3} \mathrm{Si}\right)(\mathrm{CO})_{3} \mathrm{FeCd}(\mu-\right.$ $\left.\mathrm{Br})_{2}\right], 2.540(3) \AA$ [14], and $\left[\left\{\mathrm{CdFe}(\mathrm{CO})_{4}\right\}_{4}\right], 2.559(2)-$ $2.565(2) \AA$ [18].

3. Experimental

3.1. Physical measurements

Microanalyses for C, H and N were carried out in the Department of Chemistry, Brunel University, Uxbridge, UK. Infrared spectra (KBr disc) were recorded with a Shimadzu 435 spectrophotometer. An AC-P200 NMR spectrometer was used to record ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ spectra at $81.03 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right.$, external standard: $\mathrm{H}_{3} \mathrm{PO}_{4}$ and 298 K).

3.2. Synthesis of the compounds

All preparations were carried out under nitrogen using Schlenk techniques. The solvents were purified by standard procedures. $\mathrm{Ph}_{2} \mathrm{PEt}$ was synthesized by the published method [19].

3.3. Preparation of EtPhPpy

Lithium ($1.60 \mathrm{~g}, 0.23 \mathrm{~mol}$) was finely cut and added to a solution of $\mathrm{Ph}_{2} \mathrm{PEt}(21.40 \mathrm{~g}, 0.10 \mathrm{~mol})$ in 100 ml THF. The mixture was stirred at room temperature (RT)

Table 1
Crystal data and structure refinement parameters for $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$ and 8

Formulae	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{FeMo} \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$	$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{CdFe}(8)$
MW	$\left(2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}\right)$	
Space group	796.4	798.9
Cell dimensions	$P 22_{1} / m(\mathrm{No.11)}$	$P 2_{1} / n(\mathrm{No} .14)$
$a(\AA)$		
$b(\AA)$	$7.881(1)$	$17.279(1)$
$c(\AA)$	$15.535(1)$	$12.437(1)$
$\beta($ deg $)$	$16.157(1)$	$18.017(1)$
$V\left(\AA^{3}\right)$	$102.97(1)$	$116.99(1)$
Z	$1928(1)$	$3450(2)$
$d_{\text {calcd }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	2	4
Radiation	1.372	1.538
Goodness-of-fit index	$\mathrm{MoK}(\lambda=0.71073 \AA)$	$\mathrm{MoK} \alpha(\lambda=0.71073 \AA)$
No. of unique reflections	2.84	1.43
No. of observed reflections	4092	7027
$(\|F\| \geq 4 \sigma(F))$		
No. of variables, p	2768	5455
weighting scheme $w^{-1}=\sigma^{2}(F)+g F^{2}$	238	398
R_{F}	$g=0.0002$	$g=0.00001$
$R_{w F}^{2}$	0.049	0.052

for 6 h , after which the solution was transferred to another flask with a cannula. Then 2 -chloro-2-methylpropane $(9.25 \mathrm{~g}, 0.10 \mathrm{~mol})$ in 20 ml THF was added dropwise at $0^{\circ} \mathrm{C}$, after which the mixture was stirred at RT for 1 h . Then the mixture was cooled to $0^{\circ} \mathrm{C}$, and 2-chloropyridine $(11.30 \mathrm{~g}, 0.10 \mathrm{~mol})$ in 20 ml THF was added dropwise, and the resulting solution was stirred at $50^{\circ} \mathrm{C}$ for 5 h . The solvent was almost completely removed and 100 ml of distilled water and 100 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added to the mixture. The organic layer was separated and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{ml})$. The organic fraction collected was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ overnight and then fractionated ($134-138^{\circ} \mathrm{C} / 1 \mathrm{mmHg}$) to give a colorless liquid. (11.80 g , yield 55%). The product was contaminated by a trace amount of $\mathrm{Ph}_{2} \mathrm{PEt}$ as observed from TLC, but this has no effect on subsequent reactions.

3.4. Preparation of trans-Fe(EtPhPpy) $(\mathrm{CO})_{3}, 1$

This compound was synthesized by the analogous method described [2]. Yield: yellow microcrystal, 72%. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}: ~ \delta=92.71 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{FeN}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$: C, 61.06; H, 4.95; $\mathrm{N}, 4.91$. Found: C, 61.32; H, $5.06 ; \mathrm{N}, 4.86$. IR $\nu(\mathrm{CO}): 1951,1865 \mathrm{~cm}^{-1}$.

3.5. Preparation of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu-\mathrm{EtPhPpy})_{2} \mathrm{Mo}(\mathrm{CO})_{3}, 2$

A solution of compound $1(0.29 \mathrm{~g}, 0.50 \mathrm{mmol})$ and $\mathrm{Mo}(\mathrm{CO})_{6}(0.16 \mathrm{~g}, 0.6 \mathrm{mmol})$ in benzene (20 ml) was heated under refluxing for 3 h . After the solution was cooled to $10^{\circ} \mathrm{C}$, the red solid was precipitated. This was collected by filtration and washed with benzene and diethyl ether, then re-crystallized with toluene and dried in vacuum. Yield: $0.23 \mathrm{~g}, 58 \% .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta=$ 78.35 ppm . Anal. Calcd. for $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$ $\mathrm{C}_{35.5} \mathrm{H}_{32} \mathrm{FeMoN}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$: C, 53.49; H, 4.02; N, 3.51. Found: C, 53.43; H, 4.09; N, 3.52. IR, $\nu(\mathrm{CO}): 2017$, 1986, 1954, 1903, 1867, $1830 \mathrm{~cm}^{-1}$.

3.6. Preparation of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu-E t P h P p y)_{2} \mathrm{Mn}(\mathrm{SCN})_{2}$

 ($M=\mathrm{Mn}, \mathrm{3} ; \mathrm{Fe}, 4 ; \mathrm{Co}, 5 ; \mathrm{Ni}, 6$)To a solution of complex $1(0.29 \mathrm{~g}, 0.50 \mathrm{mmol})$ in 20 ml dichloromethane was added solid $\mathrm{M}(\mathrm{SCN})_{2}$ (0.60 mmol). The mixture was stirred at RT for 8 h . After filtration, the filtrate was concentrated to about 5 ml , then diethyl ether was added to give a precipitate. The precipitate was filtered and dried in vacuum.

Complex 3. Yield: pale yellow powder, $0.25 \mathrm{~g}, 67 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta=42.80 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FeMnN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 50.22; H, 3.81; N, 7.56. Found: C, 50.26; H, 3.86; N, 7.58. IR, $\nu(\mathrm{CO}): 2000$, 1923, $1882 \mathrm{~cm}^{-1}$.

Complex 4. Yield: orange powder, $0.22 \mathrm{~g}, 59 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}: ~ \delta=43.37 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{Fe}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}$: C , $50.15 ; \mathrm{H}, 3.80 ; \mathrm{N}, 7.55$. Found: C, 50.37 ; H, 4.03; N, 7.49. IR, $\nu(\mathrm{CO}): 2004$, $1925,1870 \mathrm{~cm}^{-1}$.

Complex 5. Yield: green powder, $0.18 \mathrm{~g}, 49 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta=43.23 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{CoFeN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 50.69; H, 3.84; N, 7.68. Found: C, 49.93; H, 3.86; N, 7.49. IR, $\nu(\mathrm{CO}): 2005$, 1932, $1884 \mathrm{~cm}^{-1}$.

Complex 6. Yield: brown powder, $0.25 \mathrm{~g}, 67 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta=42.70 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FeN}_{4} \mathrm{NiO}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 49.97; $\mathrm{H}, 3.79$; $\mathrm{N}, 7.48$. Found: C, 50.11; H, 3.76; N, 7.37. IR, $\nu(\mathrm{CO}): 2004$, 1930, $1868 \mathrm{~cm}^{-1}$.

Table 2
Atomic coodinates of complex $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}\left(\times 10^{5}\right.$ for Mo, Fe and P atoms, $\times 10^{4}$ for other atoms) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{4}$ for Mo, Fe and P atoms, $\AA^{2} \times 10^{3}$ for other atoms)

Atoms	X	Y	Z	$U_{\text {eq }}$
Mo(1)	22156(8)	25000	6934(1)	414(2)
$\mathrm{Fe}(1)$	37598(13)	25000	25152(6)	435(3)
$\mathrm{P}(1)$	35198(2)	10804(8)	24078(8)	463(4)
O(1)	73(7)	2500	2613(4)	65(2)
$O(2)$	5904(10)	2500	4243(4)	88(3)
$O(3)$	6569(8)	2500	1588(3)	66(2)
O(4)	-134(9)	2500	-1122(3)	80(3)
$O(5)$	$4490(5)$	1259(3)	-96(3)	68(2)
N(1)	685(5)	1353(3)	$1100(2)$	45(1)
C(1)	1479(11)	2500	2562(5)	52(3)
C(2)	5045(11)	2500	3573(5)	57(3)
C(3)	5334(10)	2500	1872(4)	49(3)
C(4)	719(10)	2500	-424(4)	49(3)
C(5)	3615(7)	1684(3)	235(3)	49(2)
C(6)	-900(7)	1152(3)	615(3)	50(2)
C(7)	-1638(7)	350(3)	610(3)	54(2)
C(8)	-740(8)	-291(3)	1114(3)	$60(2)$
C(9)	840(8)	-84(3)	1641 (3)	$59(2)$
C(10)	1516(7)	746(3)	1637(3)	46(2)
C(11)	2337(10)	871(4)	3899(4)	76(3)
C(12)	1991(11)	412(5)	4583(4)	93(3)
C(13)	2549(12)	-379(5)	4739(4)	91(3)
C(14)	3428(11)	-763(5)	4229(5)	93(3)
C(15)	3787(10)	-325(4)	3538(4)	77(3)
C(16)	3214(8)	492(4)	3365(3)	56(2)
C(17)	5259(7)	479(4)	2090(3)	60(2)
C(18)	7024(8)	567(5)	2742(4)	78(3)
C(19)	4117(24)	2500	6576(10)	$99(7)$
C(20)	2610(29)	2500	5950(10)	152(11)
C(21)	975(25)	2500	6141(14)	169(13)
C(22)	859(25)	2500	6988(16)	221(19)
C(23)	2371(27)	2500	7622(12)	186(15)
C(24)	3991(25)	2500	7432(10)	167(14)
C(25)	5607(28)	2500	8113(12)	144(11)

[^1]
3.7. Preparation of $(\mathrm{CO})_{3} \mathrm{Fe}(\mu \text {-EtPhPpy })_{2} \mathrm{M}(\mathrm{SCN})_{2}(\mathrm{M}$ $=\mathrm{Zn}, 7 ; \mathrm{Cd}, 8$; $\mathrm{Hg}, 9$)

To a solution of complex $1(0.29 \mathrm{~g}, 0.50 \mathrm{mmol})$ in 20 ml dichloromethane and 10 ml methanol was added solid $\mathrm{M}(\mathrm{SCN})_{2}(0.60 \mathrm{mmol})$. The mixture was stirred at RT for 4 h . After filtration, the filtrate was concentrated to about 15 ml , then cooled to $-30^{\circ} \mathrm{C}$ for 20 h to give microcrystals. The crystals were filtered and dried in vacuum.

Complex 7. Yield: pale yellow microcrystals, 0.26 g , 70%. ${ }^{3 \mathrm{P}}$ P $\left\{{ }^{1} \mathrm{H}\right\}$ NMR: $\delta=80.50 \mathrm{ppm}$. Anal. Calcd. for

Table 3
Atomic coodinates of complex 8 ($\times 10^{5}$ for Cd and Fe atoms, $\times 10^{4}$ for other atoms) and equivalent isotropic displacement coefficients ($\AA^{2} \times 10^{4}$ for Cd and Fe atoms, $\AA^{2} \times 10^{3}$ for other atoms)

Atoms	X	Y	Z	$U_{\text {eq }}$
Cd(1)	67229(3)	15673(4)	87830(3)	496(2)
$\mathrm{Fe}(2)$	54897(5)	1505(6)	78563(4)	386(3)
$\mathrm{P}(1)$	6329(1)	-1161(1)	8692(1)	43(1)
$\mathrm{P}(2)$	4724(1)	1522(1)	7059(1)	42(1)
C(1)	5474(5)	-3137(5)	8294(3)	61(3)
C(2)	4908(6)	-3895(6)	8349(5)	83(4)
C(3)	4551(5)	-3747(7)	8883(7)	88(4)
C(4)	4744(5)	-2868(7)	9363(5)	77(4)
C(5)	5319(5)	-2108(6)	9338(4)	64(3)
C(6)	5689(4)	-2238(5)	8811 (3)	48(2)
C(7)	7404(5)	-1501(6)	10416(4)	$79(3)$
C(8)	7972(7)	-1147(8)	11194(5)	$111(5)$
C(9)	8148(7)	-68(8)	11333(5)	116(5)
C(10)	7768(7)	616(7)	10667(5)	102(4)
C(11)	7050(4)	-769(5)	9770(4)	56(3)
$\mathrm{N}(1)$	7235(4)	280(4)	9894(3)	68(2)
C(12)	7071(5)	-1785(6)	8346(5)	67(3)
C(13)	7664(7)	-2687(8)	8884(6)	97(5)
C(14)	4382(4)	2884(5)	8105(4)	53(2)
C(15)	3871(5)	3388(6)	8409(4)	60(3)
C(16)	2998(6)	3253(8)	8025(6)	86(4)
C(17)	2626(5)	2580(10)	$7339(6)$	100(5)
C(18)	3123(5)	2057(7)	7037(5)	72(3)
C(19)	4021(4)	2208(5)	7415(3)	45(2)
C(20)	6536(5)	3776(6)	7687(4)	63(3)
C(21)	6255(5)	4514(6)	7077(5)	73(4)
C(22)	5500(6)	4312(7)	6377(5)	87(4)
C(23)	5041(5)	3394(6)	6321(5)	$73(3)$
C(24)	5354(4)	2676(5)	6998(4)	49(2)
N(2)	6115(3)	2862(4)	7668(3)	51(2)
C(25)	4015(4)	1177(6)	5980(3)	55(3)
C(26)	4455(6)	663(7)	5516(4)	$74(3)$
C(27)	4641(4)	-775(5)	7257(4)	52(3)
O(1)	4086(3)	-1348(4)	6886(3)	78(2)
C(28)	6168(4)	222(5)	7356(3)	51(2)
O(2)	6599(3)	252(4)	7016 (3)	71(2)
C(29)	5218(4)	518(5)	8668(4)	52(3)
O(3)	5022(4)	703(4)	9181(3)	77(3)
N(3)	8065(4)	1749(6)	8908(5)	$80(3)$
C(30)	8697(5)	1995(6)	8921(4)	61(3)
S(1)	9623(2)	2295(2)	8955(2)	87(1)
N(4)	6744(4)	2880(5)	9642(3)	66(3)
C(31)	6762(4)	3769(6)	9820(4)	57(3)
S(2)	6804(2)	5009(2)	10109(2)	91(1)

Table 4

Selected bond lengths (\AA) and angles (deg) in complex $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$			
$\mathrm{Mo}(1)-\mathrm{Fe}(1)$	$2.922(1)$	$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1.781(7)$
$\mathrm{Mo}(1)-\mathrm{N}(1)$	$2.327(4)$	$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1.788(9)$

$\mathrm{Mo}(1)-\mathrm{C}(4) \quad 1.922(7) \mathrm{O}(1)-\mathrm{C}(1) \quad 1.129(11)$
$\mathrm{Mo}(1)-\mathrm{C}(5) \quad 1.934(6) \quad \mathrm{O}(2)-\mathrm{C}(2) \quad 1.141(9)$
$\mathrm{Fe}(1)-\mathrm{P}(1) \quad 2.217(1) \mathrm{O}(3)-\mathrm{C}(3) \quad 1.165(11)$
$\mathrm{Fe}(1)-\mathrm{C}(1) \quad 1.816(9) \quad \mathrm{O}(4)-\mathrm{C}(4) \quad 1.176(8)$
$O(5)-C(5) \quad 1.167(7)$

$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{N}(1)$	$80.8(1)$		
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$167.2(2)$	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$95.5(1)$
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$91.0(2)$	$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$108.3(4)$
$\mathrm{Fe}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$104.0(1)$	$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	$66.5(2)$
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$89.0(2)$	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	$90.7(1)$
$\mathrm{C}(4)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$85.5(2)$	$\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$	$147.9(3)$
$\mathrm{N}(1)-\mathrm{Mo}(1)-\mathrm{N}(1 \mathrm{a})$	$99.8(2)$	$\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$	$103.8(4)$
$\mathrm{C}(5)-\mathrm{Mo}(1)-\mathrm{N}(1 \mathrm{a})$	$170.5(2)$	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{P}(1 \mathrm{a})$	$168.3(1)$
$\mathrm{C}(5)-\mathrm{Mo}(1)-\mathrm{C}(5 \mathrm{a})$	$81.9(3)$	$\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	$178.3(7)$
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{P}(1)$	$85.0(1)$	$\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	$178.3(8)$
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	$81.4(2)$	$\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$168.1(6)$
$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{C}(1)$	$86.3(1)$	$\mathrm{Mo}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	$177.2(7)$
$\mathrm{Mo}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$	$170.3(3)$	$\mathrm{Mo}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	$173.0(5)$

$\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FeN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Zn}: \mathrm{C}, 49.52 ; \mathrm{H}, 3.77 ; \mathrm{N}, 7.48$. Found: C, 48.49; H, 3.82; N, 7.37. IR, $\nu(\mathrm{CO}): 2015$, 1940, $1884 \mathrm{~cm}^{-1}$.

Complex 8. Yield: orange crystals, $0.30 \mathrm{~g}, 75 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta=76.78 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{CdFeN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, 46.85 ; \mathrm{H}, 3.55 ; \mathrm{N}, 7.04$. Found: C, 46.98; H, 3.67; N, 7.37. IR, $\nu(\mathrm{CO}): 2014$, 1927, $1868 \mathrm{~cm}^{-1}$.

Complex 9. Yield: orange microcrystals, $0.32 \mathrm{~g}, 72 \%$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad$ NMR: $\delta=66.82 \mathrm{ppm}$. Anal. Calcd. for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{FeHgN}_{4} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{~S}_{2}: \mathrm{C}, 41.97 ; \mathrm{H}, 3.18 ; \mathrm{N}, 6.31$. Found: C, 41.78; H, 3.28; N, 7.37. IR, $\nu(\mathrm{CO}): 2037$, $1966,1883 \mathrm{~cm}^{-1}$.

3.8. X-ray crystallography

The intensity data of compounds $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$ and 8 were collected at 294 K on a Rigaku RAXIS IIC imag-ing-plate diffractometer using Mo $\mathrm{K} \alpha$ radiation ($\lambda=$ $0.71073 \AA$) from a rotating-anode generator operating at 50 kV and $90 \mathrm{~mA}\left(2 \theta_{\text {min }}=3^{\circ}, 2 \theta_{\text {max }}=55^{\circ}, 36.5^{\circ}\right.$ oscillation frames in the range of $0-180^{\circ}$, exposure 8 min per frame) [20]. A self-consistent semi-empirical absorption correction based on Fourier coefficient fitting was applied using the ABSCOR program [21].

The crystal structures were determined by direct methods which yielded the positions of all non-hydrogen atoms, and subsequent difference Fourier syntheses were employed to located the remaining non-hydrogen atoms which did not show up in the initial structure. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms were all generated geometrically ($\mathrm{C}-\mathrm{H}$ bond lengths fixed at $0.96 \AA$), assigned appropriate isotropic thermal parameters and allowed to ride on

Table 5
Selected bond lengths (\AA) and angles (deg) in complex 8

$\mathrm{Cd}(1)-\mathrm{Fe}(2)$	$2.684(1)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.51(1)$
$\mathrm{Cd}(1)-\mathrm{N}(1)$	$2.397(5)$	$\mathrm{C}(27)-\mathrm{O}(1)$	$1.137(8)$
$\mathrm{Cd}(1)-\mathrm{N}(2)$	$2.412(5)$	$\mathrm{C}(28)-\mathrm{O}(2)$	$1.16(1)$
$\mathrm{Cd}(1)-\mathrm{N}(3)$	$2.238(8)$	$\mathrm{C}(29)-\mathrm{O}(3)$	$1.142(1)$
$\mathrm{Cd}(1)-\mathrm{N}(4)$	$2.239(7)$	$\mathrm{N}(3)-\mathrm{C}(30)$	$1.12(1)$
$\mathrm{Fe}(2)-\mathrm{P}(1)$	$2.247(2)$	$\mathrm{C}(30)-\mathrm{S}(1)$	$1.618(9)$
$\mathrm{Fe}(2)-\mathrm{P}(2)$	$2.235(2)$	$\mathrm{N}(4)-\mathrm{C}(31)$	$1.15(1)$
$\mathrm{Fe}(2)-\mathrm{C}(27)$	$1.790(6)$	$\mathrm{C}(31)-\mathrm{S}(2)$	$1.618(8)$
		$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(27)$	$92.3(2)$
$\mathrm{Fe}(2)-\mathrm{Cd}(1)-\mathrm{N}(1)$	$88.2(1)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(27)$	$91.1(2)$
$\mathrm{Fe}(2)-\mathrm{Cd}(1)-\mathrm{N}(2)$	$89.9(1)$	$\mathrm{Cd}(1)-\mathrm{Fe}(2)-\mathrm{C}(28)$	$76.3(2)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(2)$	$176.1(2)$	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(28)$	$90.2(2)$
$\mathrm{Fe}(2)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$128.5(2)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(28)$	$88.3(2)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$90.6(3)$	$\mathrm{C}(27)-\mathrm{Fe}(2)-\mathrm{C}(28)$	$105.9(3)$
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$93.2(2)$	$\mathrm{Cd}(1)-\mathrm{Fe}(2)-\mathrm{C}(29)$	$75.7(2)$
$\mathrm{Fe}(2)-\mathrm{Cd}(1)-\mathrm{N}(4)$	$131.9(2)$	$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{C}(29)$	$88.1(2)$
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(4)$	$91.4(2)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{C}(29)$	$91.8(2)$
$\mathrm{N}(2)-\mathrm{Cd}(1)-\mathrm{N}(4)$	$87.3(2)$	$\mathrm{C}(27)-\mathrm{Fe}(2)-\mathrm{C}(29)$	$102.2(3)$
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{N}(4)$	$99.5(3)$	$\mathrm{C}(28)-\mathrm{Fe}(2)-\mathrm{C}(29)$	$151.9(3)$
$\mathrm{Cd}(1)-\mathrm{Fe}(2)-\mathrm{P}(1)$	$88.4(1)$	$\mathrm{Cd}(1)-\mathrm{N}(3)-\mathrm{C}(30)$	$169.2(6)$
$\mathrm{Cd}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	$88.3(1)$	$\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{S}(1)$	$177.4(7)$
$\mathrm{P}(1)-\mathrm{Fe}(2)-\mathrm{P}(2)$	$176.5(1)$	$\mathrm{Cd}(1)-\mathrm{N}(4)-\mathrm{C}(31)$	$152.3(6)$
$\mathrm{Cd}(1)-\mathrm{Fe}(2)-\mathrm{C}(27)$	$177.7(3)$	$\mathrm{N}(4)-\mathrm{C}(31)-\mathrm{S}(2)$	$177.8(6)$

their parent carbon atoms in the final stage of full-matrix least squares refinement. In $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$ both molecular components are located in sites of symmetry m. The toluene solvate molecule exhibits disorder; in the model used for its refinement, all carbon atoms were assigned half site occupancy (multiplicity $=1 / 4$), and the molecule was subjected to soft distance restraints of $\mathrm{C}-\mathrm{C}=1.39 \pm 0.01$ and $\mathrm{C} \cdots \mathrm{C}=2.41 \pm 0.01 \AA$ for the aromatic ring, and $\mathrm{C}-\mathrm{CH}_{3}=1.50 \pm 0.01 \AA$ and $\mathrm{C} \cdots \mathrm{CH}_{3}=2.51 \pm 0.01 \AA$ for the exocyclic carboncarbon bond.

All computations were performed on an IBM-compatible 486 PC with the SHELTX-PC program package [22]. Analytic expressions of neutral-atom scattering factors were employed, and anomalous dispersion corrections were incorporated [23].

Information and parameters concerning crystallographic data collection and structure refinement of compounds $2 \cdot \frac{1}{2} \mathrm{C}_{7} \mathrm{H}_{8}$ and 8 are summarized in Table 1. Final atomic coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms are given in Tables 2 and 3. Selected bond distances and angles are given in Tables 4 and 5.

Acknowledgements

This work is supported by Hong Kong Research Grants Council Earmarked Grant CUHK 311/94P, Direct Grant 220600620 and the National Science Foundation of China.

References

[1] Z.Z. Thang, H. Cheng, Coord. Chem. Rev. 147 (1996) 1.
[2] Z.Z. Thang, H.P. Xi, W.J. Thao, K.Y. Jiang, R.J. Wang, H.G. Wang, Y. Wu, J. Organomet. Chem. 454 (1993) 221.
[3] Z.Z. Zhang, H. Cheng, S.M. Kuang, Y.Q. Zhou, Z.X. Liu, J.K. Zhang, H.G. Wang, J. Organomet. Chem. 516 (1996) 1.
[4] S.L. Li, T.C.W. Mak, Z.Z. Zhang, J. Chem. Soc. Dalton Trans. (1996) 3475.
[5] S.L. Li, Z.Z. Zhang, T.C.W. Mak, Inorg. Chim. Acta in press.
[6] S.M. Kuang, L.J. Sun, Z.Z. Zhang, Z.Y. Zhou, B.M. Wu, T.C.W. Mak, Polyhedron 15 (1996) 3417.
[7] J.R. Sowa Jr., V. Zanoti, C. Facchin, R.J. Angelici, J. Am. Chem. Soc. 113 (1991) 9185.
[8] S. Tofke, U. Brtrens, J. Organomet. Chem. 338 (1988) 29.
[9] M.E. Garcia, J.C. Jeffrey, P. Sherwood, F.G.A. Stone, J. Chem. Soc. Dalton Trans. (1987) 1209.
[10] P.G. Byme, M.E. Garcia, J.C. Jeffrey, P. Sherwood, F.G.A. Stone, J. Chem. Soc. Dalton Trans. (1987) 1215.
[11] S.L. Li, Z.Z. Zhang, J.C.C. Chan, S.C.F. Au-Yeung, T.C.W. Mak, J. Organomet. Chem. 522 (1996) 155.
[12] F.A. Coton, R.M. Wing. Inorg. Chem. 4 (1965) 314.
[13] J.L. Atwood, D.J. Darensbourg, Inorg. Chem. 16 (1977) 2314.
[14] G. Reinhard, B. Hirle, U. Schubert, M. Knorr, P. Braunstein, A. Decian, J. Fisher, Inorg. Chem. 32 (1993) 1656.
[15] G. Reinhard, B. Hirle, U. Schubert, J. Organomet. Chem. 427 (1992) 173.
[16] P. Braunstein, M. Knorr, A. Tiripicchio, A. Tiripicchio-Camellini, Inorg. Chem. 31 (1992) 3685.
[17] P. Braunstein, L. Douce, M. Knorr, M. Strampfer, M. Lantranchi, A. Tiripicchio, J. Chem. Soc. Dalton Trans. (1992) 331.
[18] R.D. Emst, T.J. Marks, J.A. Ibers, J. Am. Chem. Soc. 99 (1977) 2090.
[19] V.D. Bianco, S. Doronzo, Inorg. Synth., 16 (1976) 158.
[20] J. Tanner, K.L. Krause, Rigaku J. 4 (1990) 11; Rigaku J. 7 (1990) 28. K.L. Krause, G.N. Phillips Jr., J. Appl. Crystallogr. 25 (1992) 146. M. Sato, M. Yamamoto, K. Imada, Y. Katsube, N. Tanaka, T. Higashi, J. Appl. Crystallogr. 25 (1992) 348.
[21] T. Higashi, abscor-An Empirical Absorption Correction Based on Fourier Coefficient Fitting, Rugaku Corporation, Tokyo, 1995.
[22] G.M. Sheldrick, SHELXL PC Manual, Siemens Analytical X-ray Instruments, Inc., Madison, WI, 1990.
[23] J.A. Ibers, W.C. Hamilton, in: International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, UK, 1974 (a) vol. 4, pp. 55, 99, 149; (b) vol. 3, p. 278.

[^0]: * Corresponding author.

[^1]: Equivalent isotropic U_{eq} is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor. The carbon atoms $\mathrm{C}(19)$ to $\mathrm{C}(25)$ of the toluene solvated molecule have only $1 / 2$ site occupancy (multiplicity $=1 / 4$).

